2016年4月30日 星期六

臺灣大學資工系副教授洪士灝:GPU發展有2大瓶頸

儘管深度學習與AI應用的竄紅,開始讓GPU重要性跟以往截然不同,靠著GPU在AI應用的高CP值,越來越多企業與AI新創都有意採用。不過即便GPU在一些AI設備的重要性與日俱增,甚至受重視程度還高過於CPU,但還是不能因此就認為GPU可以無所不能,GPU本身還是有其局限的存在。 像是GPU缺乏處理大量不同性質運算能力的特性,就是最常被人拿來凸顯GPU不足的其中一個例子。因為GPU原本就被設計成專門處理大量高同質性的資料運算工作,是只能專心做相同事情的專才。

from iThome 新聞 http://ift.tt/1UoUDrC

沒有留言:

張貼留言